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Chapter 1 Background

1.1 Rings

A rng is a set R endowed with two binary operations, usually denoted + and ·, such

that

(R,+) is an abelian group,

(R, ·) is a semigroup,

· distributes over +.

A rng R is said to be a ring with unity (or sometimes a unital ring) if there exists an

element in R, denoted by 1, which has the property that a · 1 = 1 · a = a for all a in R

(multiplicative identity=unity of R). A ring R in which a · b = b · a for all a, b in R, is

called a commutative ring.

Remark: The zero ring is a ring in which 1 = 0. From now on, except in certain

specific examples, if the term ring is used, it will mean a commutative non zero ring.

That is to say, unless stated otherwise, all our rings will be unital rings.

Warmup: Let R be a ring, with additive and multiplicative identities 0 and 1,

respectively. Then for all a, b in R: (1) 0a = a0 = 0; (2) (−a)b = a(−b) = −(ab); (3)

(−a)(−b) = ab; (4) (na)b = a(nb) = n(ab) for any n in Z. Note that n is not to be

thought of as an element of R: the notation na just means a + . . . + a, where there are

n copies of a in the sum.

Example: Z: the integers with usual addition and multiplication, form a commuta-

tive ring. Note that we cannot always divide, since 1/2 is no longer an integer. Similarly,

the familiar number systems Q,R, and C are all rings.

Z[x]: this is the set of polynomials whose coefficients are integers.

Z[x, y, z]: polynomials in three variables with integer coefficients.

Z/nZ: The integers mod n. These are equivalence classes of the integers under
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1.1 Rings – 2 –

the equivalence relation “congruence mod n”. If we just think about addition (and

subtraction), this is exactly the cyclic group of order n.

C[0, 1]: This is the set of all continuous real-valued functions on the interval [0, 1]

forms a ring under usual addition and multiplication of functions.

Mn(R) (non-commutative): the set of n×nmatrices with entries in a commutative

ring R. These form a ring, since we can add, subtract, and multiply square matrices.

This is the first example we’ve seen where the order of multiplication matters: AB is

not always equal to BA (usually it’s not).

1.1.1 Special elements in a ring

Let a be an element of a ring R . We say that a is:

a unit if a has a multiplicative inverse, i.e., if there exists an element b in R such

that ab = ba = 1; in this case, a is also said to be invertible, and b the inverse of a

(and vice versa). Note also that b is a unit as well - units come in pairs. Of course,

it’s possible that b = a, i.e., an element may be its own inverse. The set of units in

R is denoted R×- the group of units of R;

a zero-divisor if there is a nonzero element b in R such that ab = ba = 0. The set

of all non zero-divisors in R is denoted by NZD(R), and the set of zero-divisors of

R is denoted by ZD(R);

nilpotent if ak = 0 for some k ∈ Z+. The set of all nilpotent elements of R is

denoted by Nil(R);

idempotent if a2 = a.

Example: In Z, the units are ∓1, there are no non zero-divisors and hence

NZD(Z) = Z\{0}, no nilpotent elements except 0 and hence Nil(Z) = {0}, and only 1

is idempotent.

In Q[x], the units are the nonzero constant polynomials, there are no zero-divisors

except the zero polynomial, and no nontrivial idempotent or nilpotent elements.

In Z/nZ, the units are those classes m̄ for which gcd(m,n) = 1. The zero-divisors

are those for which gcd(m,n) 6= 1 and 0. Note that Z/nZ = (Z/nZ)× t ZD(Z/nZ).

InMn(R), the units are just the invertible matrices, which is just the multiplicative
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1.1 Rings – 3 –

group GLn(R). There are plenty of zero-divisors: any strictly upper-triangular matrix

multiplied by a matrix whose all rows zeros except the first row is zero. Also, any strictly

lower-triangular matrix multiplied by a matrix whose all rows zeros except the last row is

zero, so there are already lots of them. Nilpotents must have 0 as their only eigenvalue.

Idempotents must be diagonalizable and have 0 or 1 as their only eigenvalue. Note that

A ∈Mn(R) is nilpotent iff the characteristic polynomial for A is det(λI − A) = λn.

Fields: A nonzero ring in which every nonzero element is a unit is called a field.

Fields include many familiar number systems, such asQ,R,C; Z, on the other hand,

is not a field.

1.1.2 Subrings

If R is a ring, and S is a subset of R. We will say that S is a subring of R if S is a

subgroup of R under +, and S is closed under multiplication.

IMPORTANT: For the remainder of these lectures, all rings will be assumed

commutative with unity, without further mention, unless explicitly stated otherwise.

We will discuss how to easily get new rings out of other rings by finding rings inside

others (subrings) or by combining rings together.

Example: Z is a subring of Z[x], which is in turn a subring of Z[x, y, z], etc.

Z is a subring of Q, which is a subring of R, etc.

In general, there is a construction called adjoining an element defined as follows:

start with a ring R, and add a new element x. This x could be a “formal variable”,

or it could be a known element of some other ring containing R. We build a ring of

polynomial R[x] (read as R adjoin x). An element in R[x] has the form a0 + a1x +

a2x
2 + . . .+ anx

n, where the ai ∈ R. The construction of R[x] realizes R as a subring

of a larger ring.

The Gaussian integers are defined as the subring of C given by adjoining i to the

integers, namely Z[i]. They can be pictured as a square lattice in the complex plane.

They contain Z as a proper subring.

Rings such as Q[
√

2], where we adjoin an irrational square root to the rational
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1.1 Rings – 4 –

numbers, are of great importance in number theory. They are called quadratic number

fields. Since (
√

2)2 ∈ Q, we don’t need any higher powers of the new element
√

2, so

actually Q[
√

2] = {a+ b
√

2 : a, b ∈ Q}. In other words, if we think of this as some set

of polynomial ring, where the “variable” is
√

2, then actually the only polynomials we

need are linear.

Products of Rings: Let R and S be two rings. Their product, sometimes called the

direct product, denoted R× S, is the ring

R× S = {(r, s) : r ∈ R, s ∈ S}.

So as a set,R×S is just the Cartesian product. It’s made into a ring by defining addition

and multiplication componentwise:

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2); (r1, s1) · (r2, s2) = (r1r2, s1s2).

The zero element (additive identity) of this ring is just (0, 0)- note that the First zero

lives in R, but the second lives in S, so it’s bad notation. The multiplicative identity is

(1, 1). InsideR×S , there is “a copy" ofR, namely the setR×{0} = {(r, 0) : r ∈ R}.

Products of rings always have lots of zero-divisors. For example, in Z2 = Z× Z, if a, b

are nonzero integers, then (a, 0) and (0, b) are nonzero elements whose product is zero,

so they are zero-divisors.

Products of rings also have nontrivial idempotents, which is a comparatively rare

phenomenon. For instance, Z has no nontrivial idempotents, whereas Z × Z has the

idempotents (1, 0) and (0, 1).

1.1.3 Ring Homomorphisms

Just as with groups, when we study rings, we are only concerned with maps that

“preserve the structure” of a ring, and these are called ring homomorphisms. Maybe

you can guess what the definition should be, by analogy with the case of groups.

Ring homomorphisms: Let R and S be rings, and φ : R→ S be a map. We say φ

is a ring homomorphism if, for all a, b in R,

φ(a+ b) = φ(a) + φ(b),

φ(a · b) = φ(a) · φ(b),

φ(1) = 1.
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1.1 Rings – 5 –

Note that in last condition, the first 1 is in R, while the second 1 is in S. Notice that we

explicitly require that φ sends 1 to 1. What about the additive identity 0? Why don’t

we have to require that φ(0) = 0? This is because, R and S are groups under addition

and φ is a group homomorphism, it follows automatically. But since neither R or S are

groups under multiplication, we have to add in this condition separately.

Let R and S be two rings. The set of all homomorphisms from R to S is denoted

Hom(R, S).

A homomorphism is injective or surjective if it so as a map of sets (i.e., the usual

definitions apply).

The map f : Z → Z given by f(n) = n + 1 is not a ring homomorphism. It fails

conditions 1, 2, and 3. In fact, there is only one ring homomorphism from Z to Z, the

identity map, which sends each integer to itself. This is one of the reasons why Z is a

very important ring.

The map Z → Z/nZ which sends an integer m to its congruence class m̄ mod n

is a ring homomorphism.

Eva : Z[x] → Z given by Eva(p(x)) = p(a) is a ring homomorphism, called the

evaluation map at a. It means simply “plug in a”. This type of homomorphism is

ubiquitous, since polynomials can be viewed as polynomial maps, and for maps we just

“plug in” an element. One can define the same sort of map with Z replaced by an

arbitrary ring R. In fact, if R is any ring, then there are lots of homomorphisms from

Z[x] to R. All we have to do is pick an element r in R, and send x to r.

The map Z → Z sending n to nk is not a ring homomorphism unless k = 1. For

example, if k = 2, then since 2 = 12 + 12 6= (1 + 1)2 = 4, it is not additive.

If p is a prime, and R is a ring in which p = 1 + 1 + . . . + 1 = 0, then the map

R → R which sends r to rp is a ring homomorphism. In other words, when we work

mod p, the pth power map is a ring homomorphism. Contrast this with the previous

example.

Just as for groups, bĳective homomorphisms are called isomorphisms, and they tell

us when two rings “have the same structure”.

Ring isomorphisms: An isomorphism from a ringR to another ring S is a bĳective
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1.1 Rings – 6 –

homomorphism. If an isomorphism between R and S exists, then we say R and S are

isomorphic and we write R ∼= S.

There is an alternative way to characterize isomorphisms, using inverse maps.

Proposition: Let f : R → S be a homomorphism. Then f is an isomorphism if

and only if there exists a homomorphism g : S → R such that g ◦ f is the identity map

on R and f ◦ g is the identity map on S.

Proof g ◦ f = IR implies f is injective, and g is surjective. Similarly, f ◦ g = IS

implies g is injective, and f is surjective.

Example: For any ring R, the set Hom(Z[x], R) is in bĳection with R. Moreover,

Hom(Z[x], R) ∼= R. In fact, define a bĳection from R to Hom(Z[x], R) that send r in R

to Evr in Hom(Z[x], R).

Remark: The example above can be restated as follows: a homomorphism out of

Z[x] is uniquely determined by where it sends x. An analogous statement is true for

maps out of Z[x, y], etc.

Example: Inside the matrix ringM2(R), there is a subring

R =


 n 0

0 n

 : n ∈ Z

.
Even thoughM2(R) is not a commutative ring, the subring R is commutative, and it is

isomorphic to Z.

The kernel of a homomorphism: Let φ : R → S be a homomorphism of rings.

The kernel of φ, denoted kerφ, is the subset {r ∈ R : φ(r) = 0} of R. In other words,

it’s the pre-image of 0 under φ.

The image of φ is the set imφ = {s ∈ S : s = φ(r) for some r ∈ R}.

The image of a homomorphism is a subring of the codomain; the kernel is a subring

of the domain.

Example: The kernel of φ : Z→ Z/nZ sending m to m̄ is {kn : k ∈ Z}, in other

words, the set of all multiples of n.

The kernel of φ : Z[x] → Z[x] sending p(x) to p(1) is the set of all multiples of

x− 1.
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1.1 Rings – 7 –

The kernel of the map Z[x]→ Q which sends x to 1/2 is the set of all multiples of

2x− 1.

The kernel of the map Z[x] → Z2[x] which sends a polynomial p(x) to the con-

gruence class p(x) (in other words, “reduce the coefficients mod 2”) is the set of all

polynomials with even coefficients.

Remark: Just as for groups, the kernel and image detect injectivity and surjectivity:

to be injective means to have a trivial kernel, so maps with a large kernel can be thought

of as “very un-injective”.

Warmup: Let f : R → S be a homomorphism of rings. Then f is injective if and

only if ker f = {0R}; f is surjective if and only if imf = S.

1.1.4 Ideals

An ideals is in some ways like a normal subgroup, and in some ways like a vector

subspace in linear algebra.

Ideals: Let R be a commutative ring. A subset I of R is called an ideal if it

satisfies the following conditions: (1) I is an additive subgroup of R under + (additive

subgroup); (2) For any i in I and any element r of R, r · i is in I (closed under scaling).

Remark: We call the second condition “closed under scaling” to distinguish it from

“closed under multiplication”. We borrow the term from linear algebra. Notice that in

the definition we required the ringR to be commutative. This isn’t a big deal for us since

most of our rings are commutative anyway. In a noncommutative ring there are notions

of left ideals, right ideals, and two-sided ideals, depending on wether I is closed under

scaling on the left, the right, or both. As we can imagine, this complicates things quite

a bit, and is one of the reasons why noncommutative rings are much harder to study.

Proposition: If f : R→ S is a homomorphism, ker f is an ideal of R.

Proof Exercise.

Example: Every ring has at least one ideal: the subset consisting of only 0. It’s an

additive subgroup, and closed under scaling because anything times zero is zero. We

denote it by either (0) or just simply 0.
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1.1 Rings – 8 –

In Z, for any n, the set 〈n〉 of all multiples of n is an ideal.

Similarly, in a polynomial ring Z[x] (or R[x], etc), for any polynomial p(x), the set

〈p(x)〉 of all multiples of p(x) is an ideal.

In a polynomial ring Z[x] (or R[x], etc), for any element a of Z (or R, etc) the set

of polynomials which go to zero when you plug in a for x forms an ideal. You might

recognize this as the kernel of the map p(x) 7→ p(a).

In any ring R, the entire ring R is itself ideal, called the “unit ideal”. The reason for

this name is: if an ideal I contains 1, then it is equal to the entire ring, because if 1 is in

I , then for any r, r = r · 1 is also in I by closure under scaling. This is the largest ideal

in R.

What are all possible ideals in R = Z/6Z? This is a classic exam-style question.

Let’s work it out - let I be a “mystery” ideal. I will just write elements as integers, but

they’re all to be taken mod 6. First of all, if 1 is in I , then I = R, so from now on let’s

assume that 1 is not in I . We know 0 must be in I , and that if nothing else is, then I

is just the zero ideal. So now let’s assume that there is at least one other element a in

I , which is nonzero, and not equal to 1. If a = 5, then since 5 · 5 = 25 = 1, I would

contain 1, and hence be the unit ideal again. So let’s assume a 6= 5, either. If a = 3, then

the only multiples of a mod 6 are 3 and 0, so in this case I = {0, 3}. If a = 2, then all

the multiples of 2 mod 6 are 0, 2, 4, we get I = {0, 2, 4}. Similarly if a = 4. What if I

contains 2 and 3? Then by closure under addition it contains 5 as well, and then I would

be the unit ideal as above. Similarly, if I contains one even and one odd number mod 6,

then we just get the unit ideal. So the possible ideals in Z/6Z are 0, R, 〈2̄〉, 〈3̄〉. Note we

have used the notation 〈· · · 〉 as in the examples above to denote the set of multiples of a

given element. These types of ideals come up so often that they have a special name:

Ideal generated by a set: Let X be any subset of a ring R. The ideal generated

by X is the smallest ideal containing all elements of X , and is denoted by 〈X〉. It

can also be described as the set of all “R-linear combinations” of elements of X with

coefficients inR. Elements ofX are called generators of the ideal. IfX is a finite set, say

X = {x1, . . . , xk}, we will write this ideal “finitely generated ideal” as 〈x1, . . . , xk〉.

In the case when X is a singleton, X = {x}, the ideal 〈x〉 is called principal.

Remark: Note that there may be many different choices of generators for a given
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1.1 Rings – 9 –

ideal. For example, 〈n〉 = 〈−n〉 inside Z; 〈x〉 = 〈5x〉 inside R[x] (but not when

considered as ideals in Z[x]- do you see why not?). Note that 〈2, x〉 = 〈4, x− 2〉 inside

Q[x]. In fact, even the number of generators can be ambiguous: the ideals 〈2〉 and 〈4, 6〉

are equal in Z.

Principal ideals are the nicest possible ideals you can have, and there are lots of

rings in which every ideal is principal, including Z andQ[x]. These nice rings are called

principal ideal domains, and we will study them more later.

Warmup: Let I be an ideal in R. I contains a unit if and only if I = R.

Operations on Ideals: The following proposition gives ways to produce new ideals,

both larger and smaller, from given ideals.

Proposition: Let {Ia}a∈A be an arbitrary collection of ideals in a ring R, indexed

by a set A. Then

⋂
a∈A Ia is an ideal in R.

Ia + Ib = {x+ y : x ∈ Ia, y ∈ Ib} is an ideal, called the sum of Ia and Ib. It is the

smallest ideal in R which contains both Ia and Ib.

Proof Exercise.

Example: Let I = 〈x2, y〉, J = 〈x, y2〉 in C[x, y]. Then I ∩J = 〈x2, xy, y2), while

I + J = 〈x, y〉.

Let m,n ∈ Z be coprime. Then 〈m〉 ∩ 〈n〉 = 〈mn〉, while 〈m〉 + 〈n〉 = 〈1〉 = Z.

This second is another way of stating the fact that if gcd(m,n) = 1, then there are

integers a, b such that am+ bn = 1.

1.1.5 Quotient Rings

We know that if we have a set S, and we choose an equivalence relation on it, we

can partition our set into equivalence classes, which are disjoint and whose union is the

entire set. Elements are in the same equivalence class if and only if they are equivalent

under the relation we chose at the beginning. We also know that conversely, any way we

partition our set gives rise to an equivalence relation- we simply define two elements to

be equivalent whenever they live in the same piece of the partition.
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The idea of a coset in ring theory is basically the same as in group theory, except

with ideals replacing subgroups. Let’s go through it: letR be a ring, and I an ideal inR.

First we define our equivalence relation: elements a, b ofR are equivalent, written a ∼ b,

when a− b is in I . Then by the general theory discussed in the previous paragraph, this

partitions our ring into disjoint subsets, called cosets. One of the cosets is just I itself:

this is the equivalence class of 0, since a ∼ 0 exactly when a = a − 0 ∈ I . The other

cosets look similar to I , they’ve just been “translated” by elements of R. We will write

R/I for the set of cosets of I .

For a familiar example, takeR to be Z, and I to be the ideal 〈3〉. Then the cosets are

〈3〉 itself, and the two other subsets {. . . ,−2, 1, 4, . . .} and {. . . ,−1, 2, 5, . . .}. They

look the same (integers spaced 3 apart), but just “shifted”.

Quotient Rings: Now that we’ve defined the cosets, we want a way to turn the set

of cosets R/I into a ring itself, and this is where the fact that I is an ideal comes into

play. To fix notation, R is our ring, I our ideal in R, and if r is an element of R we

write r̄ for the coset containing r- another way of writing it is r + I = {r + i : i ∈ I},

namely the elements of I all shifted by r. We sometimes call r a representative of r.

The annoying part is that there may be many choices of representative for the same coset

- this is where that stuff about things being “well-defined” comes in to play. We can

add cosets in the same way as for groups: r1 + r2 = r1 + r2. One has to fuss about to

prove that this addition rule is well-defined, but we’ll skip that since we did it for groups

and we’re about to do it again for the multiplication of cosets. We multiply cosets in the

obvious way: r1 · r2 = r1 · r2. Now let’s check this is well-defined. Suppose r1 and s1

are both representatives of the same coset (so r1 = s1), and that r2 and s2 also represent

the same coset. We need to check that whether we multiply the cosets using the r’s or

the s’s we’ll get the same answer. That’s what it means to check that the multiplication

is well-defined. In other words, we must show that r1 · r2 = s1 · s2. Since r1 and

s1 represent the same coset, they are equivalent (since cosets are equivalence classes),

which means there is an element i1 of I such that r1 = s1 + i1. Similarly there is an i2
such that r2 = s2 + i2. This means that

r1 · r2 = r1 · r2 = (s1 + i1)(s2 + i2)

= s1s2 + s1i2 + s2i1 + i1i2 = s1s2 = s1 · s2.

We should be able to go through and justify why each equality is true. The trickiest one
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1.1 Rings – 11 –

is the fourth: the cosets s1s2 + s1i2 + s2i1 + i1i2 and s1s2 are the same because the two

representatives are equivalent: (s1s2 + s1i2 + s2i1 + i1i2)− (s1s2) = s1i2 + s2i1 + i1i2,

which is in I . You can see here why we need property 2 of the definition of an ideal.

We want s1i2 + s2i1 + i1i2 to be in I , and it wouldn’t be if I were only closed under

multiplication, since s1 and s2 do not necessarily live in I .

There’s a lot more left to show that this addition and multiplication make R/I into

a (commutative) ring (with unity): we have to check all the axioms for a (commutative)

ring (with unity)! we won’t type that all out in great detail. First of all, R/I has a zero

element, which is just the coset I (usually represented by the element 0 in R). Often

we will write 0 instead of the coset notation 0̄. Secondly, as you might guess, R/I has

a multiplicative identity, which is just the coset 1̄. Again we may often write simply 1

instead of the coset notation 1̄. We don’t really need to check the axioms stating thatR/I

is an additive abelian group, since we’ve already done that when we discussed quotient

groups. The other axioms basically follow from the corresponding property for R. For

instance, here’s a proof that left-distributivity holds. Let a, b, c be elements of R. Then

ā · (b̄+ c̄) = a · (b+ c) = a · b+ a · c = ā · b̄+ ā · c̄.

Example: Take R = Z and I = 〈n〉. Then R/I = Z/nZ, and this is just the usual

integers mod n, where we do all the addition and multiplication mod n.

Take R = C[x], and I = 〈x − 2〉. We said before that the coset I acts as the zero

element in R/I , so x− 2 = 0. This is the same, using the addition rule for cosets, as

saying that x̄ = 2̄. So how does R/I look? Well, it’s just like the polynomial ring,

except we’ve replaced x with 2 and put bars over everything. Since 2 is already in C, we

haven’t really added anything, so in fact this quotient ring is just like C.

Take R = R[x], I = 〈x2 + 1〉. In the quotient ring R[x]/〈x2 + 1〉, we have cosets

of polynomials, but with the rule that x x2 + 1 = 0̄, which we rewrite as x̄2 = −1̄. So

we think of elements of R/I here as polynomials, but with the extra rule that x̄2 = −1.

This is something we’ve seen before: it’s basically the same as C, where we take R and

adjoin a square root of −1, which in the current setting is being denoted by x̄.

Let’s work backwards a bit. Say we want to work with a number system that’s like

the rational numbers, but also for some reason includes the element
√

2. We can build

this number system, namely Q[
√

2], using quotient rings. Start with Q. We’ll need to
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adjoin a variable (call it x ), and then set this variable equal to
√

2. We cannot just

quotient out by (x−
√

2) because that’s not a polynomial with rational coefficients. So

the correct quotient ring seems like it should beQ[x]/〈x2−2〉. So the ringQ[x]/〈x2−2〉

is like the rationals, but with an extra symbol x̄, which we know should behave like
√

2,

namely x̄2 = 2̄. We can say that Q[x]/〈x2 − 2〉 ∼= Q[
√

2], where the latter is to be

thought of as a subring of R (or C).

Let R = R[x] and I be the ideal generated by x3 − 1. Now we’re going to stop

writing the bars on top of everything, for simplicity. So we think of elements of this

ring as polynomials in x, but subject to the relation x3 = 1. What is (x4 − x2) times

(x2+x+1) in this ring? It doesn’t have degree 6, like we’d expect in a normal polynomial

ring. First we can simplify the first one to x − x2 using the relation, and then multiply

them out to give

(x− x2)(x2 + x+ 1) = x3 + x2 + x− x4 − x3 − x2 = x− x4,

and since x3 = 1, x4 = x, so this is just zero! So the first thing we notice is that this

ring has zero divisors - we just found two of them - x4 − x2 and x2 + x+ 1. There is a

more enlightening way to see that their product is zero, however, by diligently factoring

everything first:

(x4 − x2)(x2 + x+ 1) = x2(x+ 1)(x− 1)(x2 + x+ 1) = x2(x+ 1)(x3 − 1).

This shows that their product is amultiple ofx3−1, hence lies in I . So (x4−x2)(x2+x+1)

and x3 − 1 are equivalent, hence the coset [(x4 − x2)(x2 + x + 1)] is the same as the

coset [x3− 1], which is just I , and we know that this functions as the zero element in the

quotient ring. Notice that the zero divisor phenomenon basically happened because the

generator for I factored: x3 − 1 = (x− 1)(x2 + x+ 1). That means right away that the

two polynomials x− 1 and x2 + x+ 1 are zero divisors. We’ll come back to this when

we discuss prime ideals.

Here’s a cool example that shows how you can do calculus without limits. Start with

the ring R[x], and adjoin a new element ε, giving the ring R[x][ε] = R[x, ε]. Finally,

take the quotient by the ideal 〈ε2〉, this forces ε to satisfy the relation ε2 = 0. Let

R = R[x, ε]/〈ε2〉 be this new ring. We can compute derivatives in this ring as follows:

pick a polynomial whose derivative you want to compute, say f(x) = x3. Now look at

f(x+ ε) = (x+ ε)3 = x3 + 3x2ε+ 3xε2 + ε3 = x3 + 3x2ε.
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All the higher ε terms disappear because of the relation ε2 = 0, and the coefficient of

the remaining ε term is just 3x2, the derivative! In a HW exercise you will be asked to

prove that in general,

f(x+ ε) = f(x) + f ′(x)ε.

If we work instead with the relation εn = 0, when we expand f(x+ ε), you will get the

first n+ 1 terms of the Taylor series for f .

1.1.6 The Isomorphism Theorem for rings

This section contains an extremely powerful result, which we remember as saying

“image = source/kernel”. This is entirely analogous to the isomorphism theorem we saw

for groups. Recall that the image of a map of rings φ : R→ S is the subring

imφ = {s ∈ S : there exists an r ∈ R such that φ(r) = s}.

Proposition: Let φ : R → S be a homomorphism of rings, and let I ⊆ R be its

kernel. Then imφ ∼= R/I .

Proof (Hint) As usual we have to define an isomorphism f : R/I → imφ. Let r̄ ∈ R/I

be a coset, and define f(r̄) = φ(r).

Example: First we’ll use the proposition to give a proof that R[x]/〈x2 + 1〉 ∼= C,

which we showed in the previous section. The idea is to first give a map from R[x] to

C, find its kernel, and apply the theorem. The map we’ll use is φ : R[x] → C given

by p(x) 7→ p(i). Like we did before, but now x really means x , and not the coset [x].

It’s surjective, because for any a + bi in C, we have φ(a + bx) = a + bi; so imφ = C.

To find the kernel, suppose φ(p) = 0. Then p(i) = 0, so p has i as a root; since it’s a

real polynomial, it must also have −i as a root, too (complex roots of real polynomials

always come in conjugate pairs. . .). This means that if we factor p over C, it has factors

x − i and x + i, so over R, it has a factor x2 + 1. Thus p is in the ideal generated

by x2 + 1. Conversely, every element of the ideal 〈x2 + 1〉 is in kernel, so this shows

kerφ = 〈x2 + 1〉. Applying the theorem then gives R[x]/〈x2 + 1〉 ∼= C.

For an easier example, consider the ring R[x]/〈x − 1〉. We know that the quotient

here basically means “set x equal to 1”, and since 1 is already in R, this quotient ring

should just beR. So define φ : R[x]→ R by sending x to 1; that is to say, φ(p(x)) = p(1)
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(so φ is just the evaluation map Ev1). In fact,

R = imφ ∼= R[x] = kerφ = R[x]/〈x− 1〉).

1.1.7 Division and Factorization in Z

First we recall mostly without proof the basic multiplicative properties of Z.

Proposition: If a and b are two integers, with b 6= 0, then there exist unique integers

q and r, with 0 ≤ r < |b|, such that a = bq + r.

We say that b divides a if a = bk for some integer k, and this happens if and only if

r = 0 in the proposition. Using this, one can prove that any pair of nonzero integers a, b

has a gcd, and that the gcd can be expressed as an integer linear combination of a and b,

in particular

Proposition: If a and b are coprime, then there exist integers x and y such that

ax+ by = 1.

The definition of a prime integer is an integer greater than one which has no factors

except 1 and itself. The above proposition shows that

Proposition: If p is prime and p divides ab, then p|a or p|b.

Proof Assume that p|ab. We show that if p - a, it forces p|b. So assume that p - a.

Then p and a are coprime (since p has no nontrivial factors), so we can find x, y with

px + ay = 1. Multiply by b to give pbx + aby = b. Since p divides both terms on the

left, it divides b.

Finally, the most famous result about primes is that they are “multiplicative building

blocks” for Z.

Proposition: (Fundamental Theorem of Arithmetic). If n is any integer, then n can

be written as

n = cp1 . . . pr,

where the pi are primes and c = ∓1. This expression is unique except for the order of

the prime factors.
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1.1.8 Division and Factorization of Polynomials

To keep the theory of polynomials manageable, we will be considering mostly

polynomials whose coefficients live in Q or R or C (as opposed to Z, where there aren’t

enough units, or say Z/6Z, where there are zero divisors).

Wewill denote by k an arbitrary field, but you should keep the examples k = Q,R,C

in our mind. In the division algorithm for Z, the remainder r is “small”, i.e. less than

|b|. For this we had to measure the “size” of b using absolute value (since b might be

negative). Polynomials also have a measure of size, namely their degrees.

Degree of a polynomial: Let p ∈ k[x] be a nonzero polynomial, written as p(x) =

anx
n + . . . + a1x + a0, where an 6= 0. The degree of p is n, written deg p = n. In

other words, the degree of p is the largest exponent of x which appears with nonzero

coefficient.

Remark: Note that we did not define the degree of the zero polynomial, for technical

reasons. Polynomials of degree zero (and also the zero polynomial, whose degree is

undefined) are called constant polynomials; degree one, linear; degree two; quadratic;

then cubic, quartic, etc.

As for integers, we say f divides g in k[x], written f |g , if there is an h ∈ k[x] such

that g = fh. Then f is said to be a divisor or factor of g. The notion of irreducibility,

like primeness for integers, is a sort of minimality condition for the divides relation:

Irreducible polynomials: Apolynomial p ∈ k[x] is irreducible if p is non-constant

and the only divisors of p which have lower degree are the constant polynomials.

The main results about divisibility and factorization for polynomials in k[x] are the

following:

Theorem:

1. If f, g ∈ k[x] and g 6= 0, then there exist polynomials q, r ∈ k[x] such that

f = gq + r, with either r = 0 or 0 ≤ deg r < deg g.

2. If f and g have no nonconstant common factor then there are polynomials r, s such

that fr + gs = 1.

3. If p ∈ k[x] is irreducible and p|fg, then p|f or p|g.
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4. Every nonzero polynomial f can be written as f = cp1 . . . pr, where c is a unit (a

nonzero constant polynomial) and the pi are irreducible polynomials.

Proof Omitted. Part 1 is basically just long division of polynomials as you learned in

high school. Parts 2, 3, and 4 follow from 1 using the same arguments as for integers.

Remark: In the factorization in 4, we can even omit the unit term c, since cp1 will

still be irreducible, so we could just rename cp1 as p1. However, we will often try to

work with monic polynomials, i.e., those whose leading coefficient is 1. In this case, if

we take all the pi to be monic, then the unit factor c (which would just be the product of

the leading terms of the pi) appears out front.

Root (or zero) of a polynomial: Let f ∈ k[x]. An element α ∈ k is called a root

(or zero) of f if f(α) = 0 in k. Equivalently, α is a root of f if f ∈ kerEvα . If K is a

larger field containing k, we also say that α ∈ K is a root of f in K if f(α) = 0 in K.

Remark: Note that it makes sense to evaluate f(α), even when α ∈ K\k, because

since k ⊆ K, k[x] ⊆ K[x], so we can regard f also as an element ofK[x] and apply the

evaluation map Ev : K[x]→ K to f . The next proposition says that finding roots is the

same as finding linear factors.

Proposition: Let f ∈ k[x]. Then f has a root in k if and only if f has a linear

factor.

Proof First suppose that f has a linear factor, so we can write f(x) = (x − c)g(x)

for some c ∈ k, g ∈ k[x]. Then f(c) = (c − c)g(c) = 0, so f has the root c in k.

Conversely, suppose f has a root c in k. Then f ∈ kerEvc : k[x] → k. Also, the

polynomial x − c is in ker f . Now apply the division algorithm to f and x − c, giving

f = (x−c)q+r , where r = 0 or deg r < deg(x−c) = 1, so rmust be a constant (either

it’s 0 or it has degree zero, meaning it’s a nonzero constant). Call this constant a. Then

f(x) = (x−c)q(x)+a. Plugging in x = c gives 0 = f(c) = (c−c)q(c)+a = 0+a = a,

so a = 0. Thus f = (x− c)q, so f has a linear factor.

Now let’s see how these factorizations look over various fields of interest.

Example: OverC, every nonconstant polynomial has a root. So it has a linear factor.

Proceeding inductively, this shows that every complex polynomial factors into linear

factors, i.e. every nonzero f ∈ C[x] can be written as f(x) = c(x− a1)r1 . . . (x− an)rn
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for some c 6= 0 and ai in C, and ri ∈ N. If some exponent ri > 1, ai is called amultiple

root, and ri its multiplicity. If ri = 1, ai is called a simple root. In other words, the

irreducible polynomials over C are the linear ones.

Over R things are slightly more complicated. There are two types of irreducibles in

R[x]: linear ones and irreducible quadratics. We can tell whether a quadratic ax2+bx+c

is irreducible by looking at the discriminant b2 − 4ac. If b2 − 4ac < 0, it’s irreducible,

and vice versa. The way to see that these are the only irreducibles is by taking a real

polynomial f ∈ R[x], and viewing it temporarily as an element of C[x] (which contains

R[x]). It factorizes completely into linear factors over C, and it’s easy to check that the

non-real roots come in complex conjugate pairs ai, ai. For each such pair we obtain a

real irreducible quadratic, because

(x− a)(x− ā) = x2 − (a+ ā)x+ |a|2,

and we can check that the discriminant of this thing is negative.

Over Q things are even worse! Not only are there linear and quadratic irreducibles,

like in R, but in fact there are irreducibles of every degree! For example, if p is prime,

the polynomial xp−1 + xp−2 + . . . + x + 1 is irreducible. This is a very interesting

polynomial, called a cyclotomic polynomial, which can be thought of as xp − 1/x− 1.

It’s roots are the pth roots of unity (except 1 itself).

Irreducibility is fussy over Z as well. For example, the polynomial 3x − 3 is

irreducible over Q, because even though we can factor it as 3(x − 1), 3 is a unit in Q.

But over Z, 3 is not a unit, so 3x − 3 is reducible. Thus the issue of (ir)reducibility is

complicated by the existence of fewer units.

Luckily there is a useful result called Eisenstein’s Criterion that helps allows us to

identify some of the irreducible polynomials over Q:

Theorem: (Eisenstein’s Criterion). Let f(x) = anx
n + . . . + a1x + a0 ∈ Z[x].

If there is a prime p such that p2 - a0, p|ai for i = 0, . . . , n − 1 and p - an, then f is

irreducible over Q. If gcd(a0, . . . , an) = 1, then f is also irreducible over Z.

Proof First, note that: we can interpret the conditions on the coefficients in terms of

reduction modp, as follows: letting f̄ be the reduction of f modp (or modp2), i.e., the

image of f under the map Z[x] → Z/pZ[x] (or Z[x] → Z/p2Z[x]), the conditions say

that f̄ = anx
n, with an 6= 0 mod p, and f = anx

n + a0 mod p2, with an 6= 0 and a0 a
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multiple of p mod p2.

Now, suppose the conditions of the theorem hold, and assume for a contradiction

that f is reducible inQ[x], so that f = gh for some non-unit g, h ∈ Q[x]. By a corollary

of Gauss’ Lemma, we find that f is reducible in Z[x] as well. Then denoting by f, g, h

the reductions modp of these polynomials, we have ḡh̄ = f̄ = anx
n, which means that

ḡ = āxk and h̄ = b̄xn−k. This shows that all the other coefficients of g and h are zero

modp, so they’re all divisible by p. But since their constant terms are both divisible

by p, the constant term of f is divisible by p2, which contradicts the hypothesis of the

theorem.

Example: The polynomial f(x) = 2x3 + 6x2 + 12x+ 6 is irreducible overQ, since

the prime 3 divides all but the leading coefficient, but 32 does not divide the constant

term. Yet it is not irreducible over Z because we can factorize it as 2(x3 +3x2 +4x+3),

and this is a nontrivial factorization since 2 is not a unit in Z.

The theorem does not apply to the polynomial x2 + 5x+ 6, since there is no prime

which divides the lowest two coefficients. However, this polynomial is nevertheless

reducible, since it factorizes as (x+ 2)(x+ 3).

The theorem does not apply either to the polynomial 2x2 + x + 3, but this one

happens to be irreducible, since its discriminant is 12 − 4 · 2 · 3 = −11. This means it

has two complex roots, so cannot have any integer roots. These two examples show that

if we cannot find a prime p as in the statement, no conclusion whatsoever can be drawn

about the irreducibility of the polynomial.

Here is a famous application. We prove that the cyclotomic polynomial Φp(x) =

xp−1 + . . .+x+ 1 (where p is some prime) mentioned above is irreducible in Z[x]. First

off, a trick: Φp(x) is irreducible if and only if Φp(x+ 1) is (reason: f(x) 7→ f(x+ 1) is

an automorphism of rings). But since Φp(x) = xp−1
x−1 , so replacing x by x+ 1 we have

Φp(x+ 1) = 1
x

((x+ 1)p − 1)

= 1
x

xp + pxp−1 +
(
p

2

)
xp−2 + . . .+ px


= xp−1 + pxp−2 + . . .+ p.

Thus Eisenstein’s criterion applies and shows the irreducibility of Φp(x + 1), hence of

Φp(x).
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1.1.9 Special Classes of Rings

In this subsection, we define various classes of rings, and investigate the relationships

between them.

Fields: A field is a nonzero ring in which every nonzero element is a unit. As

before, we use the letter k throughout to denote an arbitrary field.

For example, Q,R,C are fields, while Z is not. We proved previously thatQ[
√

2] is

a field. Z/5Z is a field, while Z/6Z is not. In general, Z/nZ is a field if and only if n

is a prime (you should prove this as an exercise - it follows from an analysis of the units

and zero divisors in Z/nZ).

Proposition: Let R be a nonzero ring. R is a field if and only if it has exactly two

ideals (which must be the zero and unit ideals).

Integral domains: A nonzero ring is called an integral domain (or usually simply

a domain) if it contains no zero divisors except 0.

Example: (1) Z is a domain, (2) Z/nZ is not a domain when n is composite. It is

a domain when n is prime, (3) Q[x]/〈x2 − 1〉 is not a domain, but Q[x]/〈x2 + 1〉 is.

Principal ideal domains: An integral domain is called a principal ideal domain

(PID for short) if every ideal in it is principal (can be generated by a single element).

Example: (1) Z is a principal ideal domain.

Question: what about the ideal 〈2, 5〉 generated by 2 and 5? It has two generators, so it

doesn’t seem like it’s a principal ideal . . . Answer: since 5 − 2 − 2 = 1 is also in this

ideal, the ideal is actually the unit ideal, generated by 1, hence principal. Some ideals

may not seem principal, even though they actually are.

(2) k[x] is a principal ideal domain.

(3) Z[x] is not a principal ideal domain: the ideal 〈2, x〉 cannot be generated by one

element.

(4) C[x, y] is not a principal ideal domain: the ideal 〈x, y〉 cannot be generated by one

element.

Euclidean Domains: An integral domain R is called a Euclidean domain if there

is a norm on R, which is a function η from R\{0} to N, which satisfies
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For any f, g in R, with g nonzero, there exist q, r in R such that f = qg + r, and

either r = 0 or η(r) < η(g).

For any nonzero f, g in R, η(f) ≤ η(fg).

Remark: The definition says, in simple terms, that any element f can be divided by a

nonzero element g, giving a remainder r that is smaller than the thing you divided by

(g). The second property says that when you multiply elements, the norms get bigger

(or stay the same).

Example (1) Z is a Euclidean domain. The norm function is just the absolute value.

The fact that it satisfies the two properties is clear.

(2) Q[x] is a Euclidean domain. The norm function is the degree: the highest power

of x appearing in the polynomial. Just as for integers, we can do long division with

polynomials, and the remainder always has degree strictly less than the thing we divided

by. So the first property holds. The second Property holds, and in fact η(f) = η(g) if

and only if they differ by a unit (recall that the units in the this ring are just the nonzero

constant polynomials).

(3) The Gaussian integers Z[i] are a Euclidean domain with norm function given by

η(a+ bi) = a2 + b2.

(4) It can be quite hard to decide whether a given ring is a Euclidean domain or not. For

how we can we prove that there does not exist a norm function? Maybe there is one,

but we weren’t smart enough to find it! Anyways, Z[x] is not a Euclidean domain. The

easiest way to see this will come soon, when we prove that every Euclidean domain is a

PID. Since we know that Z[x] isn’t a PID, it cannot be a Euclidean domain, either.

Irreducible elements: A nonzero element r of a ring R is called irreducible if it

is not a unit and the only way to factor r = ab is by taking either a or b to be a unit.

Thus an irreducible element is one which is “unfactorable”, except for “trivial”

factorizations obtained by pulling out units. For example, prime numbers in Z, or linear

polynomials in C[x]. Of course, in R[x], there are irreducible quadratics, too, such as

x2 + 1.

Unique factorization domains: An integral domain R is called a unique factor-

ization domain (or UFD, for short) if every nonzero element that is not a unit can

be written as a product of finitely many irreducible elements, and this factorization is
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unique, meaning that given any two factorizations r = a1 . . . ak = b1 . . . bm, k and m

must be the same, and after possibly reordering the factors, each ai is a unit times bi.

Example: (1) Z is a UFD - this is the statement of the fundamental theorem of

arithmetic.

(2) Z[x],Q[x],R[x], and C[x] are all UFDs.

(3) Z/6Z is not a UFD, because for example there are two ways to factor 3: 3 = 3 · 3

and 3 = 3 · 5. But there’s a simpler reason: Z/6Z is not even a domain! 3 is a zero

divisor: if you multiply it up by 2, you get 0, so there should be many ways to factor

it, by adding copies of 2 to the second factor. This is one reason why we restrict our

attention to domains when talking about factorization.

(4) The most famous example of a ring that is a domain but is not a UFD is Z[
√
−5],

which is a subring of C. In this ring there are two ways to factor 6: 6 = 2 · 3 and

6 = (1 +
√
−5)(1−

√
−5). One has to check that 2, 3 and 1∓

√
−5 are all irreducible

and do not differ by units to make sure that these really count as distinct factorizations.

We know establish some containments between these various types of rings. The

results are summarized in the following theorem.

Theorem: {fields} ⊆ {Euclidean domains} ⊆ {PIDs} ⊆ {UFDs} ⊆ {IDs}

1.1.10 Prime and Maximal Ideals

In this subsection we discuss two very important types of ideals, and learn how to

use them to check whether certain quotients are fields or integral domains.

Prime numbers and prime ideals inZ: The crucial connection between (principal)

ideals and elements is this: divides corresponds to contains. This means: if f |g in a ring

(meaning there is an h such that g = fh), then g ∈ 〈f〉. If f divides g, then g is in the

ideal generated by f .

What does this mean in the simple case of the ring Z? Prime numbers are ones that

have no proper divisors. Another property, often taken as the definition, is that if a prime

p divides a product, then it divides one of the factors: if p|ab, then p|a or p|b. This is the

property we want to generalize to ideals. So let’s translate the statement. In fact, p|ab

means ab ∈ 〈p〉, and similarly p|ameans a ∈ 〈p〉, etc. So in terms of ideals, p is a prime

number means that if ab is in 〈p〉, then a or b (or both) must be in 〈p〉. So for an ideal
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in Z generated by a prime number, we have the following slogan: if a product is in it,

one of the factors must be, also. This is basically the definition of a prime ideal, and it

makes sense in any ring.

Prime Ideals: Let p be a proper ideal in a ring R. We say p is a prime ideal if

whenever ab is in p, either a or b (or both) is in p. The set of all prime ideals of R is

denoted by Spec(R).

Example: In Z, an ideal 〈n〉 is prime if and only if the integer |n| is prime (we put

the absolute value since primes are required to be positive, but the generator may not

be), or n = 0.

More generally, in any PID, a nonzero ideal is prime if and only if it is generated by

an irreducible element.

In the ring Z, the zero ideal is prime, but in the ring Z/6Z, the zero ideal is not

prime, since 2 · 3 ∈ 〈0〉 but 2 6∈ 〈0〉 and 3 6∈ 〈0〉.

Maximal Ideals: An ideal m in a ring R is called maximal if it is not the unit ideal

and there are no other ideals I such that m ( I ( R. The set of all maximal ideals of R

is denoted by MaxSpec(R).

Example: (1) In Z and R[x], every nonzero prime ideal is maximal.

(2) In R[x, y], 〈x, y〉 is maximal, 〈x〉 is prime but not maximal, and 〈x2〉 is neither prime

nor maximal.

(3) In C[x, y], any ideal of the form 〈x− a, y − b〉 (where a, b ∈ C) is maximal.

(4) In Z[x], 〈2〉 is prime but not maximal. The ideal 〈2, x〉 is maximal. The ideal 〈4, x〉

is neither prime nor maximal.

Now we prove a few useful things about these ideals. Before proving the next very

useful proposition, we need a basic result about ideals in quotient rings. Recall that the

canonical homomorphism π : R→ R/I from a ring to its quotient is the map sending

x to the coset x̄. Note that π is surjective.

Proposition: Let R be a ring and I an ideal of R. Then the ideals of R/I are in

bĳection with the ideals of R which contain I .

Proof First pick an ideal J̄ in R/I . Its pre-image J = π−1(J̄) is an ideal in R, since

pre-images of ideals are again ideals. Moreover, it contains I since everything in I goes
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to zero, and zero is in J . Conversely, suppose given an ideal J of R which contains I .

Then we claim that π(J) is an ideal inR/I . We know that it’s an additive subgroup, since

it’s the image of a group homomorphism. It’s closed under scaling: let x̄ ∈ π(J), for

some x ∈ J , and ȳ be any other element of R/I . Since π is surjective, write ȳ = π(y).

Then xy ∈ J (since it’s an ideal), and π(xy) = xy = x̄ȳ , so x̄ȳ is in π(J). To establish

the bĳection, we must check that π(π−1(J̄)) = J̄ and π−1(π(J)) = J . I’ll leave this to

you...

Proposition: Let R be a ring.

1. An ideal p is prime if and only if R/p is an integral domain.

2. An ideal m is maximal if and only if R/m is a field.

3. Any maximal ideal is prime.

Proof 1. The condition for p to be prime is “ab ∈ p implies a or b is in p”. In terms of

the quotient ring R/p, this is exactly the same as saying “āb̄ = 0 implies ā or b̄ is zero.”

This is exactly the statement that there cannot be zero divisors in R/p.

2. If R/m is a field then the only ideals are 〈0〉 and R/m. So the only ideals in R

containing m are their two pre images, namely m and R. So m is maximal. Conversely,

ifm is maximal, then there are no ideals inR/m containing 〈0〉 besidesR/m itself. This

means 〈0〉 is the unique maximal ideal of R/m, which implies that everything outside

〈0〉 is a unit (HW exercise), hence R/m is a field. Alternatively, this implies R/m has

only two ideals, 0 and R/m itself, so it is a field.

The relationship between prime and maximal ideals is as follows:

Warmup: Let R be a principal ideal domain, and I = 〈a〉 a nonzero ideal. Then I

is prime if and only if I is maximal if and only if a is an irreducible element.

Radical ideals: Let R be a ring and I ⊆ R an ideal. The radical of I , denoted by
√
I or Rad(I), is the ideal

√
I = {x ∈ R : ∃n ∈ Z+;xn ∈ I}.

If I =
√
I , we say that I is a radical ideal.

Warmup: Show that
√
I is the intersection of all the prime ideals containing I .

Example: Any prime ideal is radical. The ideal 6Z is a radical ideal in Z and
√

12Z = 6Z.
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1.1.11 Noetherian Rings

There is one more important property that polynomial rings R[X] inherit from R:

that of being noetherian.

Noetherian rings: A noetherian ring is a (commutative) ring with 1 in which

every ascending chain of ideals terminates. In other words: if I1 ⊆ I2 ⊆ I3 ⊆ . . . is an

ascending chain of ideals, then there is some index n such that In = In+1 = . . ..

Proposition: A ring R is Noetherian if and only if every ideal in R is finitely

generated.

Proof Assume that R is Noetherian and let I be an ideal in R. If I = 〈0〉, we are done;

if not, pick an element a1 ∈ I\〈0〉. If I = 〈a1〉, we are done; if not, pick an element

a2 ∈ I\〈a1〉. If I = 〈a1, a2〉, we are done; if not, pick a3 ∈ I\〈a1, a2〉 and continue. In

this way we get an ascending chain of ideals

〈a1〉 ( 〈a1, a2〉 ( . . . .

Since R is Noetherian, this process must terminate, say at 〈a1, a2, . . . , an〉, and then I is

generated by a1, a2, . . . , an.

Now assume that every ideal inR is finitely generated. Assumewe have an ascending

chain

I1 ( I2 ( . . .

of ideals. Let I be the union of these Ij ; then I is an ideal, hence finitely generated,

say I = 〈a1, a2, . . . , an〉. Each of these elements lies in some Ij; let m be the maximal

index occurring. Then I ⊆ Im, hence Im = Im+1 = . . ..

As an immediate corollary we have

Corollary: Principal ideal domains are Noetherian.

Proof Exercise.

Theorem:(Hilbert basis theorem I) If R is a Noetherian ring, then so is the

polynomial ring R[x].

Proof Let I be an ideal in R[x]. We must show that I is finitely generated. For each

non-negative integer n, let Jn be the ideal of R consisting of the leading coefficients of
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polynomials in I whose degrees are less than or equal to n. Then

J0 ⊆ J1 ⊆ J2 ⊆ . . .

is an ascending chain of ideals in the Noetherian ring R and, as such, must terminate,

say, at Jk. So

J0 ⊆ J1 ⊆ . . . ⊆ Jk = Jk+1 = . . . .

Now, Ji is finitely generated for each i = 1, 2, . . . , k. Therefore, for each i, let

fi1 , fi2 , . . . , fir be polynomials in R[x] whose leading coefficients generate Ji in R.

This gives us a finite set of polynomials, and it is not at all hard to see that this finite set

of polynomials generates the ideal I . This completes the proof.

Warmup: Let K be a field, and let x1, x2, . . . , xn be n indeterminates. Then

K[x1, x2, . . . , xn] is Noetherian.

1.2 Field Extensions

We begin with a simple but possibly surprising observation which makes fields

rather interesting rings.

Proposition: If K and L are fields, then any homomorphism between them must

be injective.

Proof Let f : K → L be a homomorphism. Then ker f is an ideal ofK, and there are

only two such: the zero and unit ideals. Note that ker f cannot be the unit ideal, or else f

would be the zero map, which is not a homomorphism (f(1) = 1 for homomorphisms,

and 1 6= 0 in a field). Thus ker f is trivial, so f is injective.

Field extensions: A field extension is an injective map K ↪→ L of fields. Equiva-

lently (by identifying K with its image in L, which is a subring), it is a subring K of a

field L which is also a field. In this situation, we will also speak of K being a subfield

of L, or of L as an extension of K.

Example: (1) Q ⊆ Q[
√

2], Q[
√

2] ⊆ R and R ⊆ C are all field extensions.

(2) For p prime, Z/pZ is a field with p elements, which we will hereafter denote Fp.

The polynomial ring Fp[x] is not a field, but it is possible to find a polynomial q(x) such

that the quotient Fp[x]/〈q(x)〉 is also a field, in which case Fp ⊆ Fp[x]/〈q(x)〉 is a field
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extension.

(3) IfK is a field, and x an indeterminate (or “formal”) variable, the setK(x) = {p(x)
q(x) :

q(x) 6= 0} is a field; it is an extension of K (a very large one, as we will see). We say

that K(x) is the field obtained by adjoining x to the field K. This is different from the

formation ofK[x], in which we adjoin the element x to form a new ring (the polynomial

ring), which is not a field. The fieldK(X) is often called the field of rational functions

overK, to distinguish it from the polynomial ring. It’s important to pay attention to the

square brackets “[ ] ” denoting “ring adjoin” and the parentheses “( )” denoting “field

adjoin”.

The degree of the extension: Let K ⊆ L be a field extension. The degree of the

extension, denoted [L : K] is the dimension of L as a vector space over K. It may be

infinite. We say that L is a finite extension (resp. infinite extension) of K to mean that

its degree over K is finite (resp. infinite).

Example: (1) [Q[
√

2] : Q] = 2, because the set {1,
√

2} is a basis.

(2) [C : R] = 2, because {1, i} is a basis.

(3) Let ω = e
2πi

3 , a cube root of unity. Then [Q(ω) : Q] = 2 because {1, ω} is a basis.

Note that 1 + ω + ω2 = 0 (draw a picture...) so the set {1, ω, ω2} is linearly dependent.

(4) [R : Q] =∞, because, for example, the set {√p : p is prime} is linearly independent

(and infinite), and a finite-dimensional space cannot contain an infinite set of linearly

independent elements.

(5)K ⊆ K(x) is an infinite extension: the elements 1, x, x2, . . ., are linearly independent.

Proposition: Let K ⊆ L and L ⊆ M be field extensions. Then in particular

K ⊆ M is also a field extension; it is finite if and only if K ⊆ L and L ⊆ M are both

finite, in which case the degrees of the three extensions are related by the formula

[M : K] = [M : L][L : K].

Proof Let [M : L] = m and [L : K] = n, and pick bases a1, . . . , am forM over L and

b1, . . . , bn for L over K. Then the set {aibj : i = 1, . . . ,m, j = 1, . . . , n} is a basis for

M over K (check).

Algebraic vs. Transcendental Extensions: Let K ⊆ L be a field extension. An

element α ∈ L is called algebraic over K if there is a nonzero polynomial f ∈ K[x]
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such that f(α) = 0. In this case we say that α satisfies or is a root of the polynomial f .

If there is no such polynomial, α is called transcendental over K. If every element of

L is algebraic over K, L is called an algebraic field extension. Otherwise it is called a

transcendental field extension.

Example: (1)Q[
√

2] is an algebraic extension ofQ. Every element a+b
√

2 satisfies

the polynomial relation (a+ b
√

2)2− 2a(a+ b
√

2) + (a2− 2b2) = 0, which is a rational

polynomial.

(2) Q[ω] is an algebraic extension of Q, because the new element ω is algebraic over Q;

it is a root of x3 − 1.

(3) Q ⊆ R is a transcendental extension: for example, π is not algebraic over Q.

(4) C is an algebraic extension of R, essentially just because i satisfies the polynomial

x2 + 1.

(5)K ⊆ K(x) is a transcendental extension: x does not satisfy any nonzero polynomial

relation.

1.2.1 Algebraic Closures

If f is a polynomial of degree n over the rationals or the reals, or more generally over

the complex numbers, then f need not have any rational roots, or even real roots, but we

know that f always has n complex roots, counting multiplicity. This favorable situation

can be duplicated for any field F, that is, we can construct an algebraic extension C of F

with the property that any polynomial in C[X] splits over C. There are many ways to

express this idea.

Proposition: If C is a field, the following conditions are equivalent.

1. Every nonconstant polynomial f ∈ C[X] has at least one root in C.

2. Every nonconstant polynomial f ∈ C[X] splits over C.

3. Every irreducible polynomial f ∈ C[X] is linear.

4. C has no proper algebraic extensions.

Proof (1) implies (2): By (1) we may write f = (X − α)g. Proceed inductively to

show that any nonconstant polynomial is a product of linear factors.

(2) implies (3): If f is an irreducible polynomial in C[X], then f is nonconstant.
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By (2), f is a product of linear factors. But f is irreducible, so there can be only one

such factor.

(3) implies (4): LetE be an algebraic extension ofC. If α ∈ E, let f be the minimal

polynomial of α over C “the unique monic irreducible polynomial such that f(α) = 0”.

Then f is irreducible and by (3), f is of the form X − α. But then α ∈ C, so E = C.

(4) implies (1): Let f be a nonconstant polynomial in C[X], and adjoin a root α of

f to obtain C(α). But then C(α) is an algebraic extension of C, so by (4), α ∈ C.

Remark: If any (and hence all) of the conditions in previous proposition are satisfied,

we say that C is algebraically closed.

It will be useful to embed an arbitrary field F in an algebraically closed field.

Algebraic closures: An extension C of F is an algebraic closure of F if C is

algebraic over F and C is algebraically closed.

1.3 Problems

1. Let R be a commutative ring with unity. Prove that 〈0〉 is a prime ideal of R if and

only if R is an integral domain.

2. A subset of a ring is said to be a multiplicative system if it is closed under

multiplication and contains the multiplicative identity 1. Let R be a commutative

ring with unity and P an ideal of R. Prove that P is a prime ideal if and only if

R\P is a multiplicative system.

3. Let I and J be two ideals of a commutative ring with unity R, neither contained in

the other. Prove that the ideal I ∪ J is not a prime ideal.

4. Let I be an ideal of a ring R, and let a ∈ R. Prove that the set

{i+ ra : i ∈ I and r ∈ R}

is an ideal of R. This ideal is denoted by 〈I, a〉 “the ideal generated by I and a”.

5. Prove that every finite integral domain is a field.

6. Let R be a finite ring. Prove that any prime ideal of R is also a maximal ideal.

7. The product of two ideals I and J is defined to be the ideal generated by all
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products ab, where a ∈ I and b ∈ J . That is,if S = {ab : a ∈ I, b ∈ J}, then the

product of I and J is given by

IJ = 〈S〉.

We can also view this product as all sums of such products

IJ = {a1b1 + a2b2 + . . .+ anbn : ai ∈ I and bi ∈ J}.

Let P be an ideal in a commutative ring with unity R. Prove that P is prime if and

only if IJ ⊆ P implies I ⊆ P or J ⊆ P for any ideals I and J of R.

8. Let D be a ring. Prove that D is an integral domain if and only if D[x] is an

integral domain. In particular, if K is a field, then K[x] is an integral domain.

Furthermore, D is an integral domain if and only if D[x, y] is an integral domain.

More generally, prove thatD is an integral domain if and only ifD[x1, x2, . . . , xn]

is an integral domain. Conclude that if K is a field, then K[x1, x2, . . . , xn] is an

integral domain.

9. Recall the Zorn’s lemma: Let � be a partial order on a non-empty set S. If every

chain in S has an upper bound in S, then S contains a maximal. Show that every

nonzero ring has at least one maximal ideal.

10. Use Zorn’s lemma to prove that every proper ideal of a ring is contained in a

maximal ideal. (Hint: let I be an ideal of a ring R; the key is to choose carefully

a set S of ideals such that when Zorn’s lemma gives you a maximal element of S,

this will turn out to be a maximal ideal containing I .)

11. Let R be a commutative ring with unity. Prove that the union of all the maximal

ideals of R is the set of non-units of R:⋃
m∈MaxSpec(R)

m = R\R×.

12. Prove that the nilradical of a commutative ring with unity R is the intersection of

all prime ideals in R— that is ⋂
p∈Spec(R)

p = Nil(R).

13. Let x be an element of a unique factorization domain D. Prove that x is prime if

and only if x is irreducible.

14. Let R be the ring of all polynomials with integer coefficients that have no x term;

that is, all polynomials of the form

a0 + a2x
2 + a3x

3 + . . .+ anx
n.
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This particular polynomial ring is usually denoted by R = Z[x2, x3]. Find

gcd(x2, x3) and gcd(x5, x6) in R. Also, show that R is not a unique factoriza-

tion domain.

15. Show that in any principal ideal domain, every nonzero prime ideal is a maximal

ideal.

16. Let D be a principal ideal domain. Prove that, for an element x 6= 0 ∈ D, x is

irreducible if and only if 〈x〉 is maximal.

17. LetK be a field. Find Spec(K[x]) and MaxSpec(K[x]).

18. Let f : R→ S be an onto homomorphism between two rings R and S. Show that

if an ideal I of R is finitely generated, then its homomorphic image f(I) is also

finitely generated.

19. Prove that any homomorphic image of a Noetherian ring is Noetherian —that is,

prove that if I is an ideal of a Noetherian ring R, then R/I is also Noetherian.
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Chapter 2 Basic Algebraic geometry

2.1 What is Algebraic Geometry?

Algebraic Geometry is the study of the geometry of the set of common zeros of a

collection of polynomials.

Recall: If R is a commutative ring, then R[X1, . . . , Xn] is a commutative ring.

Affine n-space: An
R = An = Rn = {(r1, . . . , rn) : ri ∈ R}.

Polynomial map: Every f ∈ R[X1, . . . , Xn] defines a polynomial map f : An
R →

R, a 7→ f(a).

Affine algebraic set: VR(S) = V(S) = {a ∈ Rn : f(a) = 0 for all f ∈ S} for some

S ⊆ R[X1, . . . , Xn].

Remark: We write V(S) = V(f1, . . . , fk) if S = {f1, . . . , fk}.

Example: VR(X2 + Y 2 − 1) = {(a, b) ∈ R2 : a2 + b2 = 1} 6= ∅ (infinite set).

VQ(X2 + Y 2 − 1) = {(a, b) ∈ Q2 : a2 + b2 = 1} 6= ∅ (countable set).

VF2(X2 + Y 2 − 1) = {(a, b) ∈ F2
2 : a2 + b2 = 1} 6= ∅ (finite set).

VZ(X2 + Y 2 − 1) = {(a, b) ∈ Z2 : a2 + b2 = 1} = {(∓1, 0), (0,∓1)} (finite set).

VR(X2 + Y 2 + 1) = {(a, b) ∈ R2 : a2 + b2 = −1} = ∅ (empty set).

VC(X2 + Y 2 − 1) = {(a, b) ∈ C2 : a2 + b2 = −1} 6= ∅.

Example: Let c be a constant polynomial inR[X1, . . . , Xn]. ThenVR(c) = Rn if c = 0,

and VR(c) = ∅ if c 6= 0. In particular, VR(1) = ∅.

Example: Consider Y −X2, Y 2 −X3, Y 2 − (X3 +X2) in R[X, Y ]. Then

VR(Y −X2) = affine plane curve which is a conic.

VR(Y 2 −X3) = affine plane curve which is a cuspidal cubic.

VR(Y 2 − (X3 +X2)) = affine plane curve which is a nodal cubic.
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Example: In this example we show that VR(f1, . . . , fk) = ⋂k
j=1 VR(fj) for any

f1, . . . , fk ∈ R[X1, . . . , Xn]. Note that

a ∈ VR(f1, . . . , fk)⇔ fj(a) = 0 for all j = 1, . . . , k

⇔ a ∈ VR(fj) for all j = 1, . . . , k

⇔ a ∈
k⋂
j=1

VR(fj).

Warmup: For any collection C = {fλ : λ ∈ Λ} ⊆ R[X1, . . . , Xn], we have

VR(C) =
⋂
λ∈Λ

VR(fλ).

Example: In this examplewe show thatVR(f1 . . . fk) = ⋃k
j=1 VR(fj) for any f1, . . . , fk ∈

R[X1, . . . , Xn]. Note that

a ∈
k⋃
j=1

VR(fj)⇒ fj(a) = 0 for some j = 1, . . . , k

⇒ a ∈ (f1 . . . fk)(a) = f1(a) . . . fk(a) = 0

⇒ a ∈ VR(f1 . . . fk).

a 6∈ VR(f1 . . . fk)⇒ (f1 . . . fk)(a) = f1(a) . . . fk(a) 6= 0 for all j = 1, . . . , k

⇒ fj(a) 6= 0 for all j = 1, . . . , k

⇒ a 6∈ VR(fj) for all j = 1, . . . , k

⇒ a 6∈
k⋃
j=1

VR(fj).

Proposition: Let S ⊆ T in R[X1, . . . , Xn]. Then VR(T ) ⊆ VR(S).

Proof Suppose that S ⊆ T in R[X1, . . . , Xn]. Then

a ∈ VR(T )⇒ f(a) = 0 for all f ∈ T

⇒ f(a) = 0 for all f ∈ S (S ⊆ T )

⇒ a ∈ VR(S).

Example: Given S = {Y −
√

2, X2 +Y 2−4} ⊆ {Y −
√

2, X2 +Y 2−4, X−
√

2}

in R[X, Y ]. Then VR(T ) = {(
√

2,
√

2)} ⊆ {(
√

2,
√

2), (−
√

2,
√

2)} ⊆ VR(S).

Proposition: Let S1, . . . , Sk ⊆ R[X1, . . . , Xn]. Let {Sλ : λ ∈ Λ} be a collection of

subsets in R[X1, . . . , Xn]. Then

1. VR(S1 . . . Sk) = ⋃k
j=1 VR(Sj);

2. VR(⋃λ∈Λ Sλ) = ⋂
λ∈Λ VR(Sλ),
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where S1 . . . Sk = {f1 . . . fk : fj ∈ Sj, j = 1, . . . , k}.

Proof Let j ∈ {1, . . . , k} anda ∈ VR(Sj), then f(a) = 0 for all f ∈ Sj . Moreover, each

product f1 . . . fk contains one factor f in Sj , and hence each product vanishes at a. Thus,

VR(Sj) ⊆ VR(S1 . . . Sk) for all j ∈ {1, . . . , k}. Thus,
⋃k
j=1 VR(Sj) ⊆ VR(S1 . . . Sk).

Now, suppose that a ∈ VR(S1 . . . Sk) and a 6∈ VR(Sj) for all j = 1, . . . , k. Then, for

every j ∈ {1, . . . , k} there is gj ∈ Sj such that gj(a) 6= 0. It follows that g1 . . . gk ∈

S1 . . . Sk and g1 . . . gk(a) 6= 0 which is contradiction. Finally, we prove (2):

Sλ ⊆
⋃
λ∈Λ

Sλ for all λ ∈ Λ⇒ VR(
⋃
λ∈Λ

Sλ) ⊆ VR(Sλ) for all λ ∈ Λ.

⇒ VR(
⋃
λ∈Λ

Sλ) ⊆
⋂
λ∈Λ

VR(Sλ)

a ∈
⋂
λ∈Λ

VR(Sλ)⇒ f(a) = 0 for all λ ∈ Λ and f ∈ Sλ

⇒ f(a) = 0 for all f ∈
⋃
λ∈Λ

Sλ

⇒ a ∈ VR(
⋃
λ∈Λ

Sλ).

Proposition: Let S ⊆ R[X1, . . . , Xn]. Then R[X1, . . . , Xn]. Then VR(S) =

VR(〈S〉), where 〈S〉 is the ideal generated by S.

Proof It is clear that VR(〈S〉) ⊆ VR(S) since S ⊆ 〈S〉. Now, if a ∈ VR(S) then

f(a) = 0 for all f ∈ S. So, every R-linear combination in 〈S〉 will be vanished at a.

Hence, VR(S) ⊆ VR(〈S〉).

Remark: We can rewrite the previous results on the vanishing sets in terms of ideals

of R[X1, . . . , Xn]. Let {I, J, I1, . . . , Ik}, and {Iλ : λ ∈ Λ} are collections of ideals in

R[X1, . . . , Xn]. Then

VR(0) = Rn, where 0 = 〈0〉 is the zero ideal,

VR(1) = ∅, where 1 = 〈1〉,

VR(I1 . . . Ik) = ⋃k
j=1 VR(Ij). Here, I1 . . . Ik is all finite sum

∑
finite

f1 . . . fk, where

fj ∈ Ij, j = 1, . . . , k.

VR(⋃λ∈Λ Iλ) = ⋂
λ∈Λ VR(Iλ).

A topology on a set: A topology on a setX is a collection of distinguished subsets,

called closed sets, satisfying:

1. ∅ and X are closed.



Dr
. M

oh
am
me
d A

li

Ibr
ahi
m

Al
abb

oo
d

2.1 What is Algebraic Geometry? – 34 –

2. An arbitrary intersection of closed sets is closed.

3. A finite union of closed sets is closed.

Example (1) On R, the Euclidean topology.

(2) On R, cofinite topology: closed sets are finite sets, and R; ∅.

The Zariski topology: The Zariski topology on kn (here k is algebraically closed

field) is defined as the topology whose closed sets are affine algebraic sets.

Warmup: Let S = {fλ}λ∈Λ ⊆ R[X1, . . . , Xn] and let I ⊆ R[X1, . . . , Xn] be

the ideal generated by the {fλ}λ∈Λ. Prove that VR(S) = VR(I). In particular, if k

is an algebraically closed field and S ⊆ k[X1, . . . , Xn], then there is f1, f2, . . . , fr ∈

k[X1, . . . , Xn] such that Vk(S) = Vk(f1, f2, . . . , fr).

Theorem:(Hilbert basis theorem II). Every affine algebraic set in kn, where k is

an algebraically closed field, can be defined by finitely many polynomials.

Proof Apply the exercise above.

IMPORTANT: For the remainder of these lectures, all fields will be assumed

algebraically closed field, without further mention, unless explicitly stated otherwise.

Ideal of an affine algebraic set: An affine algebraic subset of kn is a set

V = Vk(〈f1, f2, . . . , fr〉) = Vk(f1, f2, . . . , fr) ⊆ kn.

Consider the map

{ideals in k[X1, . . . , Xn]} −→ {(affine) algebraic subsets of kn}

I 7−→ Vk(I)

This map is order reversing: I ⊆ J =⇒ Vk(I) ⊇ Vk(J).

Surjective.

Not injective: e.g., 〈x, y〉; 〈x2, y2〉.

Proposition: Let I ⊆ k[X1, . . . , Xn]. Then Vk(I) = Vk(
√
I).

Proof I ⊆
√
I =⇒ Vk(

√
I) ⊆ Vk(I). So take p ∈ Vk(I) ⊆ kn. Need to show for all

f ∈
√
I that f(p) = 0. We have f ∈

√
I implies fm ∈ I for some positive integerm, so

(f(p))m = fm(p) = 0 =⇒ f(p) = 0.

Now is the map I −→ Vk(I) injective?
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Example: Consider the two ideals 〈x2 + y2〉, 〈x, y〉 in R[x, y]. We have 2 radical

ideals defining the same algebraic set:

Vk(〈x, y〉) = {(0, 0)} = Vk(〈x2 + y2〉) ⊆ R2.

Ideal of an algebraic set: Let V ⊆ kn be an affine algebraic set. The ideal of V is

I(V ) = {f ∈ k[X1, . . . , Xn] : f(p) = 0 for all p ∈ V }.

Proposition: I(V ) is a radical ideal, and is the largest ideal defining V . Moreover,

V = V(I(V )) and hence I is a right inverse of V.

Proof Say V = V(I). Since I ⊆ I(V ), we have V(I(V )) ⊆ V(I) = V . Now, take

p ∈ V . Need to show that for all g ∈ I(V ), g(p) = 0, which is true by definition of I(V ).

Hilbert’s Nullstellensatz:
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